Accepted Manuscript

Development and Verification of Novel Porous Titanium Metaphyseal Cones for Revision Total Knee Arthroplasty

Ahmad Faizan, PhD, Manoshi Bhowmik-Stoker, PhD, Amanda Kirk, MS, Viktor Krebs, MD, Steven F. Harwin, MD, R. Michael Meneghini, MD

PII: S0883-5403(17)30015-3

DOI: 10.1016/j.arth.2017.01.013

Reference: YARTH 55599

To appear in: The Journal of Arthroplasty

Received Date: 22 April 2016

Revised Date: 9 December 2016

Accepted Date: 10 January 2017

Please cite this article as: Faizan A, Bhowmik-Stoker M, Kirk A, Krebs V, Harwin SF, Meneghini RM, Development and Verification of Novel Porous Titanium Metaphyseal Cones for Revision Total Knee Arthroplasty, *The Journal of Arthroplasty* (2017), doi: 10.1016/j.arth.2017.01.013.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Development and Verification of Novel Porous Titanium Metaphyseal Cones for
2	Revision Total Knee Arthroplasty
3 4 5 6 7 8 9 10	Ahmad Faizan, PhD ^a Manoshi Bhowmik-Stoker, PhD ^a Amanda Kirk, MS ^a Viktor Krebs, MD ^b Steven F. Harwin, MD ^c R. Michael Meneghini, MD ^d
11	
12	^a Stryker, 325 Corporate Drive, Mahwah, NJ, 07430
13	^b Cleveland Clinic Foundation, 2049 E 100th St, Cleveland, OH 44195
14	^c Mount Sinai Beth Israel Medical Center, 10 Nathan D Perlman Pl, New York, NY
15	10003
16	^d Indiana University School of Medicine, Department of Orthopaedic Surgery, 340 West
17	10 th Street, Suite 6200, Indianapolis, IN, 46202
18 19 20 21 22 23 24 25 26 27	Corresponding Author:
28	R. Michael Meneghini, MD
29 30	Indiana University Health Physicians Department of Orthopaedic Surgery, Indiana University School of Medicine
30 31	13100 136 th Street, Suite 2000
32	Fishers, IN 46037
33	Phone: 317-688-5980
34	rmeneghi@iuhealth.org

1	Development and Verification of Novel Porous Titanium Metaphyseal Cones for
2	Revision Total Knee Arthroplasty
3	Abstract
4	Background: Porous metaphyseal cones are widely used in revision knee arthroplasty. A
5	new system of porous titanium metaphyseal cones has been designed based on the
6	femoral and tibial morphology derived from a CT based anatomical database. The
7	purpose of this study is to evaluate the initial mechanical stability of the new porous
8	titanium revision cone system by measuring the micromotion under physiologic loading
9	compared to a widely-used existing porous tantalum metaphyseal cone system.
10	Methods: The new cones were designed to precisely fit the femoral and tibial anatomy,
11	and 3D printing technology was used to manufacture these porous titanium cones. The
12	stability of the new titanium cones and the widely used tantalum cones were compared
13	under physiologic loading conditions in bench top test model.
14	Results: The stability of the new titanium cones was either equivalent or better than the
15	tantalum cones. The new titanium femoral cone construct had significantly less
16	micromotion compared to the traditional femoral cone construct in 5 of the 12 directions
17	measured (p<0.05) while no statistical difference was found in 7 directions. The new
18	porous titanium metaphyseal tibial cones demonstrated less micromotion in medial
19	varus/valgus (p=0.004) and posterior compressive micromotion (p=0.002) compared to
20	the traditional porous tantalum system.
21	Conclusion: The findings of this biomechanical study demonstrate satisfactory
22	mechanical stability of an anatomical-based porous titanium metaphyseal cone system for
23	femoral and tibial bone loss as measured by micromotion under physiologic loading. The

- 24 new cone design, in combination with instrumentation that facilitates surgical efficiency,
- 25 is encouraging. Long term clinical follow up is warranted.
- 26 Keywords: Knee revision cones, 3D printing, porous titanium, micromotion
- 27

28 Background

29	Revision total knee arthroplasty (TKA) is a growing procedure with varying case
30	complexity. It is estimated that the number of revision TKAs performed in the United
31	States is projected to grow from 38,000 in 2005 to 268,200 by the year 2030 placing a
32	large burden on health care costs [1, 2]. Complex revision cases often present with
33	significant metaphyseal bone loss, which may be due to infection, osteolysis, loosening
34	of the primary implant or iatrogenic loss with implant resection. Larger bone defects
35	require more extensive reconstructive efforts and have been traditionally managed with
36	the use of large structural allografts [3-12], impaction bone grafting techniques with or
37	without mesh augmentation [13-16], fabrication of custom prosthetic components [17], or
38	the use of specialized hinged knee components [18]. In the past decade, large
39	metaphyseal defects have been effectively managed with partially porous metal stepped
40	"sleeves" or porous tantalum metaphyseal cones, both of which have excellent early term
41	results [19-27]. Addressing the bone loss can be challenging and the optimal
42	reconstruction method is often debated and remains unknown.
43	While porous metaphyseal cones have shown high success rates in the short and
44	mid-term [19, 22, 23, 25, 26], the existing cones have demonstrated some limitations
45	regarding geometry and size in comparison to the bony anatomy and defects encountered
46	in revision knee arthroplasty. This creates an intraoperative challenge for the surgeon to
47	reproducibly and accurately contour the bone to accurately match the implant chosen.
48	The process of machining the bone accurately may be technically challenging.
49	A new system of porous titanium metaphyseal cones have been designed based on
50	the femoral and tibial morphology derived from a CT based anatomical database. The

51 purpose of this study is to evaluate the initial mechanical stability of the new porous

52 titanium revision cone system by measuring the micromotion under physiologic loading

53 compared to a widely-used existing porous tantalum metaphyseal cone system.

54 Materials and Methods

The new porous titanium metaphyseal cone implants were designed to be used 55 56 with an accompanying instrumentation system to accurately and precisely fit the anatomy 57 of the proximal tibia and distal femur. These revision cone geometries are manufactured 58 from porous titanium (Tritanium, Stryker, Mahwah, NJ) using state of the art additive 59 manufacturing techniques. The anatomy-based fit was achieved by using an extensive 60 database of CT scans (SOMA, Stryker, Mahwah, NJ), which creates 3D models of the 61 proximal tibia and distal femur and delineates the cortical boundaries of the bone. A more detailed description of SOMA and its application in implant design can be found 62 63 elsewhere [28-31]. A virtual revision TKA algorithm was established on 478 tibias (mean 64 age 58 and 40% male) and 921 femurs (mean age 58 and 56% male). The virtual 65 intramedullary (IM) canal was identified and used to determine alignment and the bone 66 resection plane. Revision resections of 13mm on the tibia and 11mm on the femur were 67 performed to approximate additional bone loss inherent with implant removal during a revision procedure. Tibial baseplate sizing was determined based on rotation oriented to 68 69 the medial third of the tubercle and tibial plateau coverage with less than 1mm of 70 overhang. Femoral component rotation and sizing was based on approximating the 71 posterior condyles to restore the posterior condylar offset and anterior cortical run-out to 72 avoid notching and maximize anterior cortical contact. The femoral component rotation 73 was aligned with the epicondylar axis.

74	A series of conical cuts were modeled in SOMA representing the shape of
75	metaphyseal cones in three distinct geometries, (Figure 1). Figure 2 illustrates these
76	geometries assembled to bone models with compatible revision knee components.
77	Measurements were taken from the simulated reamer axes to the outer shell of the
78	cortical bone to characterize acceptable cone size, as illustrated in Figures 3.
79	Appropriate sizing and "fit" was identified by the scenario that maximized host bone
80	contact but within the cortical boundaries of the CT scan model for a given implant. Final
81	cone designs are illustrated in Figure 4.
82	Femoral micromotion
83	Seventeen composite femurs (Sawbones; Pacific Research, Vashon, WA) with a
84	cancellous analog of 20 pound per cubic foot (pcf) density were used for this study. The
85	composite femurs were prepared according to the surgical protocols of the new porous
86	titanium design (Triathlon Tritanium Cone Augments System, Stryker, Mahwah, NJ) and
87	the traditional porous tantalum design (Trabecular Metal Revision Knee System, Zimmer,
88	Warsaw, IN). An experienced revision arthroplasty surgeon was enlisted to prepare the
89	composite femurs for the traditional porous tantalum cone system in order to more
90	accurately simulate the in vivo technique and preparation with a high-speed burr. The
91	new porous titanium cones were prepared with a reamer-based system designed to
92	provide an intimate fit with the bone per the surgical protocol. A series of conical
93	reamers prepared the central base with adjacent medial and lateral "lobed" portions via
94	controlled and guided instrumentation, Figure 5. Ten of the new porous titanium cones
95	and seven of the traditional porous tantalum cones were implanted. Medium size femoral
96	components from both systems were used for this test. The new cone system utilized a

97	50mm stem. Since the traditional system has a taller boss, a 30mm stem was used. The
98	total boss/stem length for both systems was 75mm.
99	The cemented femur/cones constructs were spray painted with a black and white
100	speckle pattern on the lateral side as per protocol for the optical micromotion
101	measurements and then mounted to a six-station knee joint wear simulator. A line of sight
102	optical measurement system was used to track the speckle pattern to measure
103	micromotion between the implant construct and femur. Loading which replicated a level
104	walking activity was simulated for 154,000 cycles. The cycle count represents the
105	number of walking steps taken during the time for biological fixation to occur, typically a
106	6-week time period [32, 33]. Micromotion was measured in the x, y, and z directions at
107	the midpoints of the anterior flange, anterior chamfer, posterior chamfer and posterior
108	condyles between the composite femurs and the femoral components, (Figure 6).
109	Tibial micromotion
110	Mechanical testing of the new porous titanium tibial cone system (Triathlon
111	Tritanium Cone Augments System, Stryker, Mahwah, NJ) and traditional porous
112	tantalum cones (Trabecular Metal Revision Knee System, Zimmer, Warsaw, IN) was
113	performed using linear variable displacement transducers (LVDT). Similar to the
114	femoral specimens, tibial composite specimens were prepared by an experienced revision
115	arthroplasty surgeon with the manufacturer-recommended surgical technique. The
116	traditional porous tantalum cones were prepared with a high-speed burr to shape the
117	proximal tibial in the approximate geometry to accept the implant in order to maximize
118	composite bone contact. Similarly the new porous titanium tibial cones were prepared

119 with a reamer-based system designed to provide a more intimate fit with the bone per the

120	surgical protocol. A central conical reamer was utilized to a particular depth and a
121	medial lobed shape prepared with a smaller conical reamer via controlled and guided
122	instrumentation, (Figure 7). Micromotion of the cemented baseplate/cone construct with
123	respect to the tibia was measured in 10 test models during a stair descent loading profile
124	(Figure 8) for 10,000 cycles. The number of cycles represents 6-8 weeks of stair descent
125	activity, again the approximate length of time for initiation of bone ingrowth to occur
126	according to published literature [32, 33]. Six LVDTs were placed on anterior, posterior,
127	medial and lateral aspects of the construct to measure varus/valgus displacement,
128	internal/external rotation, compression and lift off. The test setup is shown in Figure 9.
129	Statistical Analysis
130	Unpaired T-tests and one-sided T-tests were used to evaluate statistical comparison of
131	peak-to-peak micromotion, compression, and lift off between groups.
132	Results
133	Computer simulation using CT Database (SOMA)
134	The three types of cone designs shown in Figure 1 were evaluated in the CT scans
135	available in the SOMA database. The fit results of these cone designs under various
136	resection scenarios are presented in Tables 1 through 3. When the femoral cone
137	geometry was paired with its optimal femoral component size, the average fit was seen to
138	be 92% at the resection level and 60% when buried 5mm deeper into the bone (Table 3).
139	The analysis demonstrated that the symmetric porous titanium tibial cone
140	geometry fit an average of 98% at the identified original resection level and 96% at the
141	additional 5mm resection level (5mm more distal on the tibia) of all bones when used
142	with the optimally compatible tibial baseplate (Table 1). When analyzing the fit of the

143 asymmetric tibial cone geometry, up to 10° of rotation around the tibial axis 144 (internal/external rotation) with respect to the tibial baseplate was allowed. This 145 rotational freedom is desirable in a surgical application where bone void size and location 146 is not totally aligned with the optimal tibial component rotation approximately at the 147 level of the medial one-third of tibial tubercle width. At neutral rotation to the tibial 148 implant, the asymmetric tibial cone geometry fit an average of 87% of bones at the 149 resection level and 38% of bones when 5mm below the original resection level. When 10° of internal rotation was utilized, the asymmetric tibial cone fit increased to 97% of 150 151 bones at the resection level and 78% of bones when 5mm sub-flush (Table 2). 152 Femoral Micromotion 153 The micromotion results for the new porous titanium and traditional porous tantalum femoral cone designs are presented in Table 4. The new titanium femoral cone 154

155 construct had significantly less micromotion compared to the traditional femoral cone 156 construct in 5 of the 12 directions measured (p<0.05, Table 4). These results were noted 157 at the posterior condyle, anterior flange and anterior chamfer locations. Results in other 158 directions of motion were comparable between devices (Table 4).

159 Tibial Micromotion

160 The tibial micromotion test results are presented in Table 5. The new porous 161 titanium tibial metaphyseal cone system demonstrated similar micromotion values under 162 loading compared to traditional porous tantalum cone system with the numbers available 163 $(p \ge 0.05)$ in internal external rotation, varus/valgus and lift off during a simulated stair 164 descent activity. The new porous titanium metaphyseal tibial cones demonstrated less

micromotion in medial varus/valgus (p=0.004) and posterior compressive micromotion
 (p=0.002) compared to the traditional porous tantalum system.

167 Discussion

168 Porous metaphyseal cones and sleeves have emerged as a useful method to 169 accomplish the goal of providing structural support for tibial and femoral implants as well as filling larger bone voids in revision TKA [19-27]. Short and medium term 170 171 evidence on tantalum cones now exists that supports the use of these implants in the 172 reconstruction of large tibial defects in revision TKA [19, 21-26]. Despite these clinical 173 results, the surgical preparation for these devices remains technically challenging. This 174 prompted the innovation of a new porous titanium metaphyseal cone system with an 175 anatomically based shape from three-dimensional modeling of an extensive CT database. The main objective of the accompanying instrumentation was to facilitate efficient bone 176 177 preparation with an intimate press-fit and cortical contact for maximal stability. Implant 178 mechanical stability is essential for these cementless devices to successfully 179 osseointegrate and reconstitute the femoral or tibial metaphysis providing mechanical 180 support for the implant and associated cement mantle. The assumption in this study that 181 the traditional porous tantalum metaphyseal cones are an appropriate comparison for 182 what constitutes adequate mechanical stability is supported by the successful clinical 183 results of these devices. Early outcomes with highly porous metaphyseal tantalum cones 184 utilized in large tibial defects for revision total knee arthroplasty have been reported by 185 multiple authors [25, 26]. Meneghini et al reported a series of fifteen revision knee 186 arthroplasties that were performed with a porous tantalum metaphyseal tibial cone and were followed for a minimum of two years. All tibial cones were found to be 187

188	osseointegrated radiographically and clinically at final follow up with no reported failures
189	[25]. In a series of sixteen revision total knee arthroplasties with severe tibial defects,
190	Long and Scuderi reported good results with osseointegration of the porous tantalum
191	cone 14/16 cases at a minimum 2-year follow up [26]. Similar results have been reported
192	in the femoral version of the porous tantalum metaphyseal cones [21-23]. Howard et al.
193	reported on twenty-four femoral porous tantalum cones in complex revision total knee
194	arthroplasty and found no radiographic failure or loosening at a minimum two years
195	follow up [23].
196	Longer-term results are also available with highly porous tantalum metaphyseal
197	tibial cones, and have demonstrated continued good results [19]. Kamath et al. recently
198	reported on 66 highly porous tibial metaphyseal cones used in Type 2 and 3 AORI tibial
199	defects. At a minimum 5-year follow-up, the authors report one revision for aseptic
200	loosening and one radiograph with progressive radiolucencies concerning for fibrous
201	ingrowth with a greater than 95% revision-free survivorship at latest follow up[19].
202	The results of this study demonstrate the relative equivalency, and in some
203	specific locations superiority, of the new porous titanium cones to the clinically
204	successful traditional porous tantalum cones with respect to mechanical stability as
205	measured by micromotion under physiologic loading. By virtue of the successful clinical
206	results of the porous tantalum cones in multiple series, and similarities between the
207	porous structure of porous tantalum and titanium, the porous titanium cones are expected
208	to perform well in theory. This methodology of demonstrating mechanical stability of an
209	innovative design compared to a successful predicate is accepted in the peer-reviewed
210	literature [34-37].

211	In addition to the top priority of clinical success, surgical efficiency is a very
212	important consideration for patients, surgeons and the healthcare system. With the ever
213	growing burden of revision knee arthroplasty and the projections of increasing demand
214	for these procedures, it is essential that arthroplasty surgeons maximize their surgical
215	efficiency in these lengthy and complex procedures. These new porous titanium
216	metaphyseal cones were designed to maximize surgical efficiency in several ways,
217	including through a geometric implant fit derived from an anatomical CT database and a
218	streamlined reamer-based instrumentation that eliminates non-instrumented manual high-
219	speed burring.
220	Our study does have limitations. First, the mechanical testing performed in this
221	study was performed on sawbones composite replicate femoral and tibial specimens,
222	which may not accurately represent the in vivo scenario of revision bone. However, we
223	believe the mechanical stability of devices is appropriately compared in these specimens
224	due to their homogeneity, which minimizes confounding variables associated with
225	cadaveric specimens. Further, this testing methodology has been accepted in the hip and
226	knee arthroplasty peer-reviewed literature [34-37]. Second, although the biologic
227	fixation potential of highly porous titanium has been studied and supported [38],
228	equivalency in osseointegration and subsequent interfacial strength of porous titanium
229	compared to the clinically successful porous tantalum has not been fully elucidated. This
230	underscores the need for close clinical follow up of these devices in the short and long
231	term in order to corroborate these biomechanical findings.
232	In summary, the findings of this biomechanical study demonstrate satisfactory

233 mechanical stability of an anatomical-based porous titanium metaphyseal cone system for

femoral and tibial bone loss as measured by micromotion under physiologic loading.

235 The findings of optimized mechanical stability of these new titanium cones compared to

the clinically successful porous tantalum cones, in combination with instrumentation that

- 237 facilitates surgical efficiency, is encouraging. However, close clinical follow up is
- 238 warranted and should include radiographic and clinical outcomes in the early and longer
- 239 term.
- 240

242 **References**

243	1.	Kurtz, S., et al., Projections of primary and revision hip and knee arthroplasty in
244		the United States from 2005 to 2030. J Bone Joint Surg Am, 2007. 89(4): p. 780-
245		5.
246	2.	Kurtz, S.M., et al., Future clinical and economic impact of revision total hip and
247		knee arthroplasty. J Bone Joint Surg Am, 2007. 89 Suppl 3: p. 144-51.
248	3.	Hockman, D.E., D. Ammeen, and G.A. Engh, Augments and allografts in revision
249		total knee arthroplasty: usage and outcome using one modular revision
250		prosthesis. J Arthroplasty, 2005. 20(1): p. 35-41.
251	4.	Clatworthy, M.G., et al., The use of structural allograft for uncontained defects in
252		revision total knee arthroplasty. A minimum five-year review. J Bone Joint Surg
253		Am, 2001. 83-A (3): p. 404-11.
254	5.	Mnaymneh, W., et al., Massive allografts in salvage revisions of failed total knee
255		arthroplasties. Clin Orthop Relat Res, 1990(260): p. 144-53.
256	6.	Stockley, I., J.P. McAuley, and A.E. Gross, Allograft reconstruction in total knee
257		arthroplasty. J Bone Joint Surg Br, 1992. 74(3): p. 393-7.
258	7.	Tsahakis, P.J., W.B. Beaver, and G.W. Brick, Technique and results of allograft
259		reconstruction in revision total knee arthroplasty. Clin Orthop Relat Res,
260		1994(303): p. 86-94.
261	8.	Mow, C.S. and J.D. Wiedel, Structural allografting in revision total knee
262		arthroplasty. J Arthroplasty, 1996. 11(3): p. 235-41.

263	9.	Harris, A.I., et al., Arthroplasty with a composite of an allograft and a prosthesis
264		for knees with severe deficiency of bone. J Bone Joint Surg Am, 1995. 77(3): p.
265		373-86.
266	10.	Ghazavi, M.T., et al., Reconstruction of massive bone defects with allograft in
267		revision total knee arthroplasty. J Bone Joint Surg Am, 1997. 79(1): p. 17-25.
268	11.	Parks, N.L. and G.A. Engh, The Ranawat Award. Histology of nine structural
269		bone grafts used in total knee arthroplasty. Clin Orthop Relat Res, 1997(345): p.
270		17-23.
271	12.	Engh, G.A. and D.J. Ammeen, Use of structural allograft in revision total knee
272		arthroplasty in knees with severe tibial bone loss. J Bone Joint Surg Am, 2007.
273		89 (12): p. 2640-7.
274	13.	Suarez-Suarez, M.A., A. Murcia, and A. Maestro, Filling of segmental bone
275		defects in revision knee arthroplasty using morsellized bone grafts contained
276		within a metal mesh. Acta Orthop Belg, 2002. 68(2): p. 163-7.
277	14.	Lonner, J.H., et al., Impaction grafting and wire mesh for uncontained defects in
278		revision knee arthroplasty. Clin Orthop Relat Res, 2002(404): p. 145-51.
279	15.	Toms, A.D., et al., Impaction bone-grafting in revision joint replacement surgery.
280		J Bone Joint Surg Am, 2004. 86-A(9): p. 2050-60.
281	16.	Whiteside, L.A., Morselized allografting in revision total knee arthroplasty.
282		Orthopedics, 1998. 21(9): p. 1041-3.
283	17.	Engh, G.A. and D.J. Ammeen, Bone loss with revision total knee arthroplasty:
284		defect classification and alternatives for reconstruction. Instr Course Lect, 1999.
285		48 : p. 167-75.

286	18.	Jones, R.E., et al., Total knee arthroplasty using the S-ROM mobile-bearing hinge
287		prosthesis. J Arthroplasty, 2001. 16(3): p. 279-87.
288	19.	Kamath, A.F., D.G. Lewallen, and A.D. Hanssen, Porous tantalum metaphyseal
289		cones for severe tibial bone loss in revision knee arthroplasty: a five to nine-year
290		follow-up. J Bone Joint Surg Am, 2015. 97(3): p. 216-23.
291	20.	Graichen, H., W. Scior, and M. Strauch, Direct, Cementless, Metaphyseal
292		Fixation in Knee Revision Arthroplasty With Sleeves-Short-Term Results. J
293		Arthroplasty, 2015.
294	21.	Villanueva-Martinez, M., et al., Tantalum cones in revision total knee
295		arthroplasty. A promising short-term result with 29 cones in 21 patients. J
296		Arthroplasty, 2013. 28(6): p. 988-93.
297	22.	Lachiewicz, P.F., et al., Can tantalum cones provide fixation in complex revision
298		knee arthroplasty? Clin Orthop Relat Res, 2012. 470(1): p. 199-204.
299	23.	Howard, J.L., et al., Early results of the use of tantalum femoral cones for revision
300		total knee arthroplasty. J Bone Joint Surg Am, 2011. 93(5): p. 478-84.
301	24.	Meneghini, R.M., D.G. Lewallen, and A.D. Hanssen, Use of porous tantalum
302		metaphyseal cones for severe tibial bone loss during revision total knee
303		replacement. Surgical technique. J Bone Joint Surg Am, 2009. 91 Suppl 2 Pt 1:
304		p. 131-8.
305	25.	Meneghini, R.M., D.G. Lewallen, and A.D. Hanssen, Use of porous tantalum
306		metaphyseal cones for severe tibial bone loss during revision total knee
307		replacement. J Bone Joint Surg Am, 2008. 90(1): p. 78-84.

308	26.	Long, W.J. and G.R. Scuderi, Porous Tantalum Cones for Large Metaphyseal
309		Tibial Defects in Revision Total Knee Arthroplasty A Minimum 2-Year Follow-up.
310		J Arthroplasty, 2008.
311	27.	Radnay, C.S. and G.R. Scuderi, Management of bone loss: augments, cones,
312		offset stems. Clin Orthop Relat Res, 2006. 446: p. 83-92.
313	28.	Banerjee, S., et al., Innovations in hip arthroplasty three-dimensional modeling
314		and analytical technology (SOMA). Surg Technol Int, 2014. 24: p. 288-94.
315	29.	Faizan, A., et al., Comparison of Head Center Position and Screw Fixation
316		Options Between a Jumbo Cup and an Offset Center of Rotation Cup in Revision
317		Total Hip Arthroplasty: A Computer Simulation Study. J Arthroplasty, 2016.
318		31 (1): p. 307-11.
319	30.	Faizan, A., et al., Changes in Femoral Version During Implantation of Anatomic
320		Stems: Implications on Stem Design. J Arthroplasty, 2015.
321	31.	Faizan, A., et al., Development and verification of a cementless novel tapered
322		wedge stem for total hip arthroplasty. J Arthroplasty, 2015. 30(2): p. 235-40.
323	32.	Bobyn, J.D., et al., The optimum pore size for the fixation of porous-surfaced
324		metal implants by the ingrowth of bone. Clin Orthop Relat Res, 1980(150): p.
325		263-70.
326	33.	Jasty, M., et al., In vivo skeletal responses to porous-surfaced implants subjected
327		to small induced motions. J Bone Joint Surg Am, 1997. 79(5): p. 707-14.
328	34.	Bhimji, S. and R.M. Meneghini, Micromotion of cementless tibial baseplates
329		under physiological loading conditions. J Arthroplasty, 2012. 27(4): p. 648-54.

330	35.	Bhimji, S. and R.M. Meneghini, Micromotion of cementless tibial baseplates:
331		keels with adjuvant pegs offer more stability than pegs alone. J Arthroplasty,
332		2014. 29 (7): p. 1503-6.
333	36.	Meneghini, R.M., A. Daluga, and M. Soliman, Mechanical stability of cementless
334		tibial components in normal and osteoporotic bone. J Knee Surg, 2011. 24(3): p.
335		191-6.
336	37.	Meneghini, R.M., et al., Mechanical stability of novel highly porous metal
337		acetabular components in revision total hip arthroplasty. J Arthroplasty, 2010.
338		25 (3): p. 337-41.
339	38.	Frenkel, S.R., et al., Bone response to a novel highly porous surface in a canine
340		implantable chamber. J Biomed Mater Res B Appl Biomater, 2004. 71(2): p. 387-
341		91.
342		CHIN CHINA

1 Acknowledgements

2 This study was funded with implants, materials, testing machines and staff by Stryker.

Figure Legends

Fig 1: Modeling of three distinct conical geometries

Fig 2: Cone geometries assembled to bone models

Fig 3: Illustrates of measurements from simulated reamer axes to cortical bone that was used to determine cone fit

Fig 4: Illustration of the design of the symmetric, asymmetric and the femoral cones manufactured by additive manufacturing using porous titanium

Fig 5: Illustration of femoral preparation using central and medial/lateral lobe reamers

Fig 6: Micromotion measurement locations and direction

Fig 7: Illustration of tibial preparation using central and medial/lateral lobe reamers

Fig 8: Loading profile used in the study

Fig 9: Test set up for tibial micromotion test

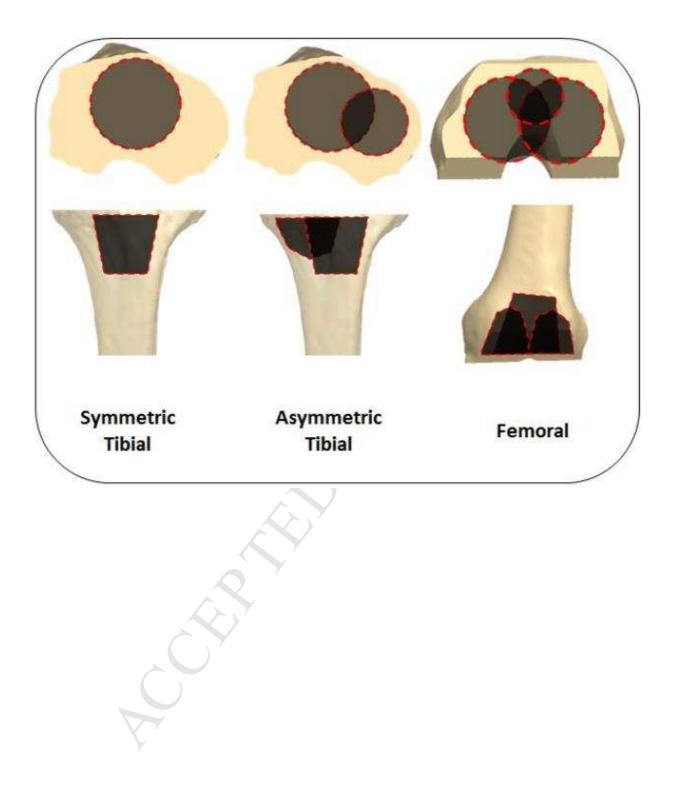
 Table 1: Simulated average fit results of the symmetric tibial cones for various orientations

Orientation	Average percentage of fit
Resection level, neutral rotation	98%
5mm below resection, neutral rotation	96%

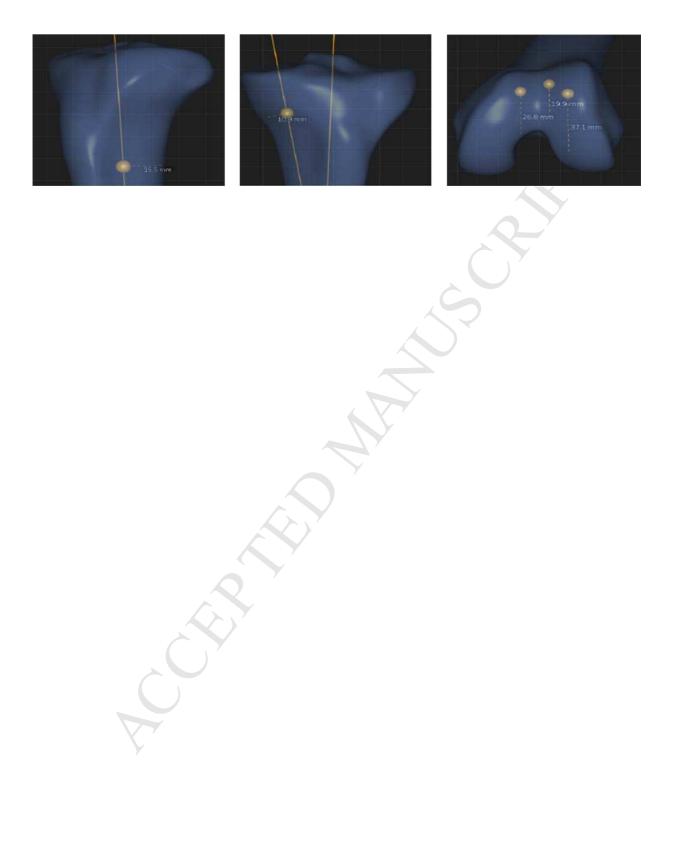
Ori	entation	Average percentage of fit				
Descetion level	Neutral rotation	87%				
Resection level	10° Internal rotation	97%				
5 mm below	Neutral rotation	38%				
resection	10° Internal rotation	78%				

Table 2: Simulated average fit results of the asymmetric tibial cones for various orientations

 Table 3: Simulated average fit results of the femoral cones for various orientations

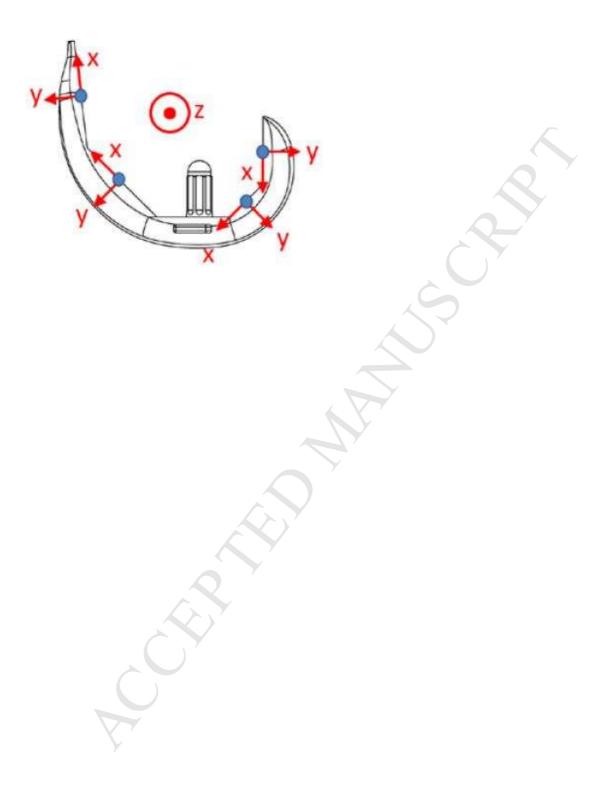

Orientation	Average percentage of fit
Resection level, neutral rotation	92%
5mm below resection, neutral rotation	60%

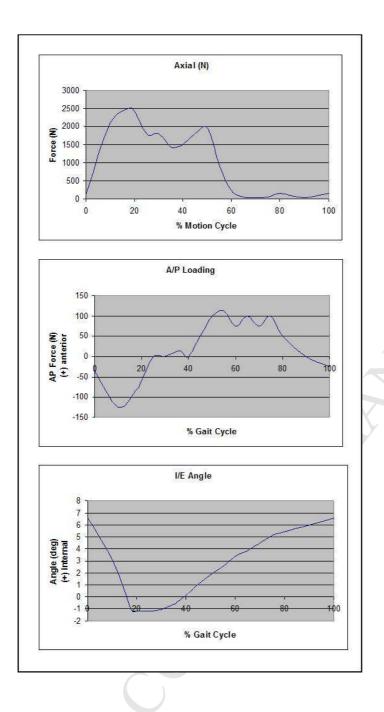
Design		Posterior condyle			Anterior flange			Anterior Chamfer			Posterior Chamfer		
		х	У	z	х	У	z	х	У	z	х	У	z
	Average	12.31	11.95	34.1	14.4	14.38	24.79	13.1	16.6	34.8	13.6	13.57	27.2
New cone system	SD	5.57	6.51	18.6	10.3	3.97	4.96	7.24	6.05	9.24	4.58	4.58	9.53
system	N	10	10	10	10	10	10	10	10	10	10	10	10
Traditional	Average	24.9	14.89	35.92	33.4	20.3	26.4	32.2	27.4	27.6	31.3	31.3	28.95
cone	SD	6.24	3.4	14.7	17.7	14.7	11.9	13.3	15.3	10.4	22.2	8.64	5.38
system	Ν	7	7	7	7	7	7	7	7	7	7	7	7
t- test	p- value	0.001	0.122	0.388	0.007	0.169	0.374	0.004	0.61	0.917	0.04	0.039	0.319

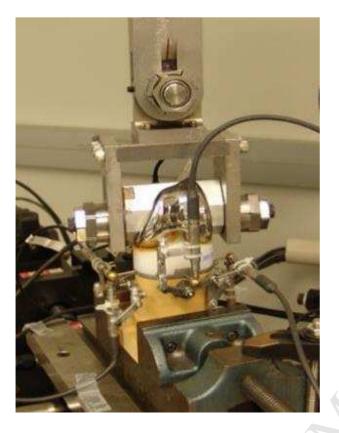

Table 4: Femoral micromotion results for the two cone systems. Bolded values indicate significant difference between New and Traditional Systems (p<0.05).

Design		Varus/ mot	•		/external ation	Compression and lift off		
		Medial S/I (mm)	Lateral S/I (mm)	Medial A/P (mm)	Lateral A/P (mm)	Posterior S/I (mm)	Anterior S/I (mm)	
N	Average	0.029	0.05	0.021	0.011	0.036	0.013	
New cone system	SD	0.012	0.009	0.008	0.012	0.007	0.003	
system	N	10	10	10	10	10	10	
Traditional	Average	0.064	0.055	0.023	0.008	0.069	0.033	
cone	SD	0.025	0.009	0.005	0.003	0.02	0.029	
system	Ν	10	10	10	10	10	10	
t- test	p- value	0.004	0.105	0.247	0.363	0.002	0.064	

Table 5: Tibial micromotion results for the two cone systems. Bolded values indicate significant difference between New and Traditional Systems (p<0.05).






Contraction of the second seco

